반복영역 바로가기
주메뉴로 바로가기
좌측메뉴로 바로가기
본문으로 바로가기

Home PeopleFacultyEmeritus Faculty

Emeritus Faculty

프린트페이스북

Kyung Chul Chae

Ph.D. in Industrial Engineering
Ohio State University, 1984

  • 042-350-2915 kcchae(at)kaist.ac.kr IE B/D E2-1 NO.4201
  • Homepage

Education

  • 1974.2 Seoul National University Physics B.S.
  • 1980.12 Ohio State University Industrial Engineering M.S.
  • 1984.8 Ohio State University Industrial Engineering Ph.D.

Research experience

  • 1984 ~ 1988 : Assistant Professor, Univ, of New Brunswick, Canada
  • 1988 ~ 1989 : Assistant Professor, Dept, of Management Science, KIT
  • 1989 ~ 1991 : Undergraduate Program Chairman, Dept. of Management Science, KAIST
  • 1991 ~ 1992 : Department Chairman, Dept. of Management Science KAIST
  • 1993 ~ 1994 : Vice President, Faculty Council, KAIST
  • 1989 ~ 1995 : Associate Professor, Dept, of Management Science, KAIST
  • 1995 ~ 1997 : Professor, Dept, of Industrial Management, KAIST
  • 1997 ~ current : Professor, Dept, of Industrial Engineering, KAIST

Research area

  • Development and application of Queueing Model
  • Extension of the basic probability models.
  • Parameter estimation of the stochastic model

Major projects

  • 기계고장시 작업취소가 발생하는 대기행렬 모형의 분석, 학술진흥재단, ’98-’99
  • 1단계 전이를 하는 확률과정에서의 평형방정식의 확장, 학술진흥재단, ’99-’2000
  • 2차원 척도를 사용하는 시스템의 신뢰도와 보증정책에 관한 연구, 과학재단, ’97-’98
  • 다양한 서비스 정책 하에서 마코비안 도착과정을 갖는 대기행렬 시스템의 확률적 분석, 학술진흥재단

Selected publications

  • Reversed Absorbing Markov Chain : A Sample Path Approach , OR Letters, 16, 41-46, 1994
  • /G/1 Vacation Models with N-Policy : Heuristic Interpretation of the Mean Waiting Time, J. of Operational Research Society, 46, 258-264, 1995.
  • Estimating Parameters of the Power Law Process with Two Measures of Failure Time, J. of Quality Technology, 30, 127-132, 1998.
  • A Note on the GI/M/1 Queue with Poisson Negative Arrivals, J. of Applied Probability, 38, 1081-1085, 2001.
  • An Arrival Time Approach to M/G/1-Type Queues with Generalized Vacations, Queuing Systems, 38, 91-100, 2001.
  • A Two-Moment Approximation for the GI/G/C Queue with Finite Capacity, to appear in INFORMS J. on Computing.
  • An Invariance Relation and a Unified Method to Derive Stationary Queue Length, To Appear in Operations Research.

LIST